Land Cover Classification Techniques

supervised classification and random forests

Developed by remote sensing specialists at the USFS Geospatial Technology and Applications Center (GTAC), located in Salt Lake City, Utah
Image Classification

The automated process of categorizing pixels or image objects into a thematic classes (e.g., conifer, deciduous, herbaceous)
Classification Scheme

- Decide on the *scheme*
 - The schema categorizes and labels the land cover *theme* (e.g. vegetation cover)
 - A well-designed classification *scheme* is critical to deriving acceptable and useful information
- The complexity will affect project accuracy and cost
- It’s not easy—but time spent creating a well designed classification scheme is always well spent!
IPCC greenhouse gas inventory

Estimate changes in 5 carbon pools for six categories of land use.

The six land use categories include:

1. Forest land
2. Cropland
3. Grassland
4. Wetland
5. Settlements
6. Other land
The Classification Scheme – 5 rules

Requirements (for continuous cover classifications)

• Must:

1. Be **exhaustive**:
 a. All land cover must be accounted for in the legend
 b. An “Other” category ensures this condition!!

2. Be **mutually exclusive**:
 a. Each land cover can be assigned to exactly one class
 b. A land cover feature is considered mutually exclusive if it cannot occur in two classes.

3. Be composed of **Labels and Rules** for labeling

4. **Meet the user’s needs**

5. Must be **based on what can be interpreted** from the imagery (note: this may conflict with the previous requirement in some cases).
The Classification Scheme – Suggestions

• In addition, the scheme should be:
 1. Hierarchical
 a. To be more flexible and better support multiple users.
 2. Based on measurable land cover characteristics
 a. Size class, % canopy cover, dominance, etc.
 3. Avoid subjective, interpretive classes, such as “old growth”.

Classification Scheme -- Bad Example

- Water
- Rock and Soil
- Shrub
- Forest
 - Hardwood
 - Sparse
 - Medium density
 - Dense
 - Softwood
 - Sparse
 - Medium density
 - Dense
- Regeneration

Yes! The data can be collapsed or expanded.

Hierarchical?

Exhaustive?

Labeling Rules?

Mutually Exclusive?

No, there is no place for grasslands, mixed forests, etc... an “other” class would satisfy this.

None! How much tree cover does it take to separate shrub and forest? No definition for density labels.

No! What is “Regeneration”? That could include grasses, shrubs or forest...
Classification Scheme -- Good Example?

- Water
- Non-Vegetated (< 20% vegetated)
- Rangeland (< 10% tree crown closure)
- Forest (> 10% tree crown closure)
 - Hardwood (65% of trees are hardwood)
 - sparse (10% and < 30% CC)
 - medium density (30% and < 66% CC)
 - dense (66% CC)
 - Softwood (65% of trees are softwood)
 - sparse (10% and < 30% CC)
 - medium density (30% and < 66% CC)
 - dense (66% CC)
 - Other Forest (includes Mixed)
- Other
Classification Scheme -- Good Example?

- Water
- Non-Vegetated (< 20% vegetated)
- Rangeland (< 10% tree crown closure)
- Forest (> 10% tree crown closure)
 - Hardwood (65% of trees are hardwood)
 - sparse (10% and < 30% CC)
 - medium density (30% and < 66% CC)
 - dense (66% CC)
 - Softwood (65% of trees are softwood)
 - sparse (10% and < 30% CC)
 - medium density (30% and < 66% CC)
 - dense (66% CC)
 - Other Forest (includes Mixed)
- Other
• This is a graph of a spectral response curves for several different types of material.
• It represents the visible to NIR portion of the electromagnetic spectrum.
• As you can see materials (e.g., dry soil, wet soil) can be identified and differentiated from each other as long as their signatures are unique from one another.
Spatial Models

Linking goals (land cover categories) with Land cover characteristics (spectral signatures)
Spatial Modeling Process

Sample Design → Theory

Reference Data → Predictor Variables: (e.g., image enhancements)

Fitting/Training

Validation

Model

Applying Model

Map of predicted values

Adapted from Guisan and Zimmerman (2000) & Franklin (2009)
Spatial Modeling Process

Sample Design → Theory → Fitting/Training → Model → Applying Model → Map of predicted values

Reference Data → Candidate variables: (e.g., image enhancements)

Predictor Variables: (e.g., image enhancements)

Adapted from Guisan and Zimmerman (2000) & Franklin (2009)
Components of the Spatial Modeling Process

Reference Data

Sample design

Theory

Fitting/Training

Candidate Variables

Model

Map of predicted values

Validation

Applying Model

Predictor Variables: (e.g., image enhancements)

Adapted from Guisan and Zimmerman (2000) & Franklin (2009)
Predictor Variables

• What does water look like?
• What does land look like?
• What information do you think will help differentiate water from land?
Predictor Variable Examples

• Impervious surface metric
• Modified normalized difference water index
• Normalized difference vegetation index
• Elevation
• Aspect
Predictor Variables

Theory/Knowledge to get predictor variables:

- Tone/color:
- Shape:
- Size:
- Association:
- Shadow:
- Pattern:
- Texture:
Spatial Modeling Process

Sample Design

- Reference Data (ROI)

Theory

Candidate variables

- Predictor Variables: (e.g., image enhancements)

Fitting/Training

Model

Map of predicted values

Applying Model

Validation

Adapted from Guisan and Zimmerman (2000) & Franklin (2009)
Training Data

• Required for the advanced classifiers
 • Interpreted manually
 • Imported from a point or polygon shapefile
 • Polygons can end up overlapping multiple segments
 • Points are more precise and have less potential for error

Image with samples collected

Classified image
Required Elements: training data

• Sample (training) data considerations:
 • Collected in field or digitized from high resolution imagery
 • Covers full region
 • Full range
 • Random, or stratified random is best, often an opportunistic sample is all that is available
Spatial Modeling Process

Sample design → Theory → Reference Data → Predictor Variables (e.g., image enhancements) → Candidate Variables → Model → Map of predicted values → Applying Model → Validation → Fitting/Training

Adapted from Guisan and Zimmerman (2000) & Franklin (2009)
After the computer finishes processing, the analyst then attempts to assign these spectral classes into informational classes. It is a simple process to regroup (recode) the clusters into meaningful information classes (the legend).

The result is a Land Cover Map.

Legend

- Water
- Conifer
- Hardwood
Supervised classification requires the analyst to create training data, either in the field or from an image data source.

The computer then creates...

- Mean Spectral Signatures
 - Conifer
 - Water
 - Deciduous

Known Conifer Area

Known Water Area

Known Deciduous Area

Digital Image
Using the statistical information provided by the training regions, the computer attempts to determine all remaining pixels in the image falling into these defined classes.
Supervised classification requires the analyst to create training data, either in the field or from an image data source.

The computer then creates...

- Known Conifer Area
- Known Water Area
- Known Deciduous Area

Mean Spectral Signatures

- Conifer
- Water
- Deciduous
Supervised Classifiers

- Nearest neighbor
- Bayes
- Decision Tree
- K-nearest neighbors
- Support Vector Machines
- Random forests
Classification Process

• Classifies based on descriptors applied to the classes

• Nearest neighbor
 • Select the features the classification will be based on (e.g., red band, NDVI, ancillary data, etc)
 • Select training data

Training samples selected for classification
Decision Trees

• Also known as CART (Classification and Regression Tree) when they refer to both:
 • **Classification tree** = predicted outcome is the class to which the data belongs.
 • **Regression tree** = predicted outcome can be considered a real number (e.g. NDVI value)

• Data mining technique
• Uses training data to develop a tree-like set of rules to determine the class for certain combinations of input data
• Simple to use and can produce good results
Example of a Decision Trees

For example - separating shrub from grassland

Landsat Band 4 >120

Landsat NDVI > 350

Aspect > 180

shrub

Landsat NDVI < 350

Aspect < 180

grassland

grassland
Spatial Modeling Process

- Sample Design
- Reference Data
- Theory
- Candidate variables
- Predictor Variables: (e.g., image enhancements)
- Fitting/Training
- Model
- Map of predicted values
- Validation
- Applying Model

Adapted from Guisan and Zimmerman (2000) & Franklin (2009)
Random Forest

Ensemble-based machine learning technique

Ensemble = “many of”

Machine learning technique = Classification and Regression Trees (CART)

The “Random” in Random Forest describes that the selection of predictor variables is random for any given CART model (“tree”).

= shrub prediction? Yes or No.
What is input into Random Forest?

• Training or reference data (point data)
 ➢ Examples of each class (e.g., Conifer, Aspen, Grass, Shrub, Road, Sagebrush, Shadow, Water, Soils)

• Predictor variables such as:
 ➢ Multispectral imagery
 ➢ Panchromatic imagery
 ➢ Topographic variables: Elevation, Slope, & Aspect.
 ➢ Bioclimatic variables: Temperature, Precipitation, Moisture Index, Potential Global Radiation, Vapor Pressure, Humidity, Degree Days.

• Derived Predictor variables such as:
 ➢ NDVI
 ➢ Tasseled Cap transformations (soil brightness, greenness, wetness)
CART

Random input variables are selected and used on your training data to make trees.

Landsat Band 4 > 120

Landsat NDVI > 350

Aspect > 180

shrub

Landsat NDVI < 350

Aspect < 180

grassland

This is an example of 1 Classification tree – hundreds are created randomly using your reference/training data and built for your various Classes.
A single CART model created during the Random Forest process.

A single pixel

The CART models make a class prediction for each pixel using the predictor variables that were used as inputs to that particular CART model.
Spatial Modeling Process

Sample design → Theory → Candidate Variables

Reference Data → Predictor Variables: (e.g., image enhancements)

Fitting/Training → Model

Validation → Map of predicted values → Applying Model

Adapted from Guisan and Zimmerman (2000) & Franklin (2009)
In this example, the most frequently occurring class modeled from the CART models for this pixel is Shrub.

So the final class for that pixel is Shrub.
What comes out of Random Forest?

Inputs

- Input image-cube (58 layers)
- Field & PI training samples

Outputs

- Random Forest models are created & applied
- Classification & labeled segments
Qualitative assessment of land cover map output
Ways to improve classification

• Improving ROI
• Select better predictor variables
• Modify land cover class categories
• Sieve
• Try an object based approach
Unit of Analysis

• Pixel Based Classification
 • Uses spectral signatures
 • Ancillary data (elevation, etc)

• Object Based Classification
 • We can use more than spectral information!
 • Texture
 • Contextual relationships
 • Etc.
Object-based Image Analysis

• What is object-based image analysis (OBIA)?
 • Image processing technique that uses image “objects” or “segments” as the basic unit instead of pixels
Object-based Image Analysis

- Division of imagery into homogeneous areas
 - Image segmentation
- Analysis performed on object or segments, not pixels
- Especially useful for high-resolution imagery, but beneficial for coarse resolution as well
Why object-based classification?

- Spectral data is averaged for each segment
 - Useful when dealing with features that have a range of spectral values (high texture)
- Segments filter out “noise” or meaningless information present in individual pixels and groups
 - Helps to reveal recognizable features
- Increase signal-to-noise ratio
- Can improve classification accuracy over pixel-based classification
Why object-based classification?

- Object-based image analysis
 - Can use spectral AND other information (size, shape, context, texture, et cetera) for classification
 - Eliminates the pixel-based speckling or “salt and pepper” that we sometimes see
Segmentation

• Mean shift
 • Most commonly used
 • Robust algorithm
 • Delineates homogeneous areas
• Memory and processor intensive
Segmentation

- Minimum region size controls the size of the segments

Min region = 50

Min region = 150

Min region = 300
Segmentation

High variance = small segments

Low variance = large segments
If you have questions please contact Bill Silva, at USFS Geospatial Technology and Applications Center (GTAC):

billsilva@fs.fed.us
801-975-3804

Please contact Sarah Marlay, at USFS International Programs to learn more about international training opportunities:
sarahemarlay@fs.fed.us